Scalable AI Architecture: Lessons from Building AgentHunter.io - AI development insights from Orris AI
Technical
January 18, 2025
16 min read

Scalable AI Architecture: Lessons from Building AgentHunter.io

How we built an AI agent marketplace that handles 100,000+ daily interactions. Complete architectural blueprint for scalable AI systems.

Scalable AI Architecture: Lessons from Building AgentHunter.io

AgentHunter.io went from 0 to 100,000 daily AI agent interactions in 3 months. Here's the exact architecture that made it possible, including the mistakes we made and the solutions that actually worked.

The Challenge: AI at Scale

When we started AgentHunter.io, we faced a unique challenge:

  • Support 1,000+ different AI agents
  • Handle 100,000+ daily interactions
  • Maintain <500ms response time
  • Keep costs under $0.001 per interaction
  • Zero downtime deployment

Most AI architectures fail at this scale. Here's how we succeeded.

Architecture Overview

High-Level System Design

┌─────────────┐     ┌─────────────┐     ┌─────────────┐
│   Frontend  │────▶│  API Gateway │────▶│Load Balancer│
└─────────────┘     └─────────────┘     └─────────────┘
                            │                    │
                            ▼                    ▼
                    ┌──────────────┐    ┌──────────────┐
                    │  Auth Service │    │ Rate Limiter │
                    └──────────────┘    └──────────────┘
                            │                    │
                            ▼                    ▼
                    ┌──────────────────────────────┐
                    │    Agent Orchestrator        │
                    └──────────────────────────────┘
                            │
        ┌───────────────────┼───────────────────┐
        ▼                   ▼                   ▼
┌──────────────┐  ┌──────────────┐  ┌──────────────┐
│ GPT-4 Agents │  │Claude Agents │  │Custom Agents │
└──────────────┘  └──────────────┘  └──────────────┘
        │                   │                   │
        └───────────────────┼───────────────────┘
                            ▼
                    ┌──────────────┐
                    │  Message Queue│
                    └──────────────┘
                            │
                    ┌───────┴────────┐
                    ▼                ▼
            ┌──────────────┐ ┌──────────────┐
            │   Database   │ │  Vector DB   │
            └──────────────┘ └──────────────┘

Core Components Deep Dive

1. API Gateway & Load Balancing

Problem: Single point of failure with massive traffic spikes

Solution: Multi-region API Gateway with intelligent routing

// API Gateway configuration export const gatewayConfig = { regions: ['us-east-1', 'us-west-2', 'eu-west-1'], routing: { strategy: 'latency-based', healthCheck: { interval: 30, timeout: 5, unhealthyThreshold: 2 }, // Intelligent routing based on agent type agentRouting: { 'gpt-4': ['premium-cluster'], 'claude': ['standard-cluster'], 'custom': ['custom-cluster'] } }, rateLimiting: { global: 10000, // requests per second perUser: 100, // requests per minute perAgent: 50 // requests per minute per agent } };

2. Agent Orchestration Layer

The Secret Sauce: Dynamic agent selection and fallback

class AgentOrchestrator: def __init__(self): self.agent_registry = {} self.performance_metrics = {} self.cost_tracker = CostTracker() async def route_request(self, request): # Analyze request intent intent = self.analyze_intent(request) # Select optimal agent based on: # 1. Capability match # 2. Current load # 3. Cost efficiency # 4. Historical performance agent_scores = {} for agent_id, agent in self.agent_registry.items(): score = self.calculate_agent_score( agent=agent, intent=intent, current_load=agent.get_load(), performance=self.performance_metrics.get(agent_id), cost=self.cost_tracker.get_cost(agent_id) ) agent_scores[agent_id] = score # Select best agent with fallback options primary_agent = max(agent_scores, key=agent_scores.get) fallback_agents = sorted( agent_scores, key=agent_scores.get, reverse=True )[1:3] try: response = await self.execute_with_timeout( primary_agent, request, timeout=2000 ) except (TimeoutError, AgentError): # Automatic fallback for fallback in fallback_agents: try: response = await self.execute_with_timeout( fallback, request, timeout=3000 ) break except: continue return response

3. Caching Strategy

Problem: Repeated similar queries burning through API credits

Solution: Multi-layer intelligent caching

// Three-tier caching system class CacheManager { constructor() { // L1: In-memory cache (fastest, smallest) this.l1Cache = new LRUCache({ max: 1000, ttl: 60 * 1000 // 1 minute }); // L2: Redis cache (fast, medium) this.l2Cache = new Redis({ ttl: 60 * 60, // 1 hour maxMemory: '2gb', evictionPolicy: 'allkeys-lru' }); // L3: Vector similarity cache (semantic matching) this.l3Cache = new VectorCache({ threshold: 0.95, // 95% similarity maxVectors: 100000 }); } async get(query) { // Check L1 let result = this.l1Cache.get(query); if (result) return { data: result, source: 'L1' }; // Check L2 result = await this.l2Cache.get(query); if (result) { this.l1Cache.set(query, result); return { data: result, source: 'L2' }; } // Check L3 (semantic similarity) const embedding = await this.getEmbedding(query); result = await this.l3Cache.findSimilar(embedding); if (result && result.similarity > 0.95) { // Promote to faster caches this.l1Cache.set(query, result.data); await this.l2Cache.set(query, result.data); return { data: result.data, source: 'L3' }; } return null; } }

Result: 65% cache hit rate, saving $18,000/month in API costs

4. Queue-Based Processing

Problem: Traffic spikes overwhelming AI services

Solution: Intelligent queue management with priority handling

from celery import Celery from kombu import Queue import redis # Queue configuration app = Celery('agent_hunter') app.conf.update( broker_url='redis://localhost:6379', result_backend='redis://localhost:6379', task_routes={ 'agents.premium.*': {'queue': 'premium'}, 'agents.standard.*': {'queue': 'standard'}, 'agents.batch.*': {'queue': 'batch'} }, task_annotations={ 'agents.premium.*': {'rate_limit': '100/s'}, 'agents.standard.*': {'rate_limit': '50/s'}, 'agents.batch.*': {'rate_limit': '10/s'} } ) @app.task(bind=True, max_retries=3) def process_agent_request(self, request_data): try: # Process with circuit breaker with CircuitBreaker( failure_threshold=5, recovery_timeout=60, expected_exception=APIError ): result = agent_processor.process(request_data) # Track metrics metrics.record( agent_id=request_data['agent_id'], latency=result['latency'], tokens=result['tokens'], cost=result['cost'] ) return result except APIError as exc: # Exponential backoff retry raise self.retry(exc=exc, countdown=2 ** self.request.retries)

5. Database Architecture

Problem: Storing millions of conversations efficiently

Solution: Hybrid database approach

-- PostgreSQL for structured data CREATE TABLE agents ( id UUID PRIMARY KEY, name VARCHAR(255), type VARCHAR(50), config JSONB, created_at TIMESTAMP DEFAULT NOW(), performance_metrics JSONB ); CREATE TABLE conversations ( id UUID PRIMARY KEY, agent_id UUID REFERENCES agents(id), user_id UUID, started_at TIMESTAMP DEFAULT NOW(), ended_at TIMESTAMP, metadata JSONB ); -- Indexes for performance CREATE INDEX idx_conversations_user_agent ON conversations(user_id, agent_id, started_at DESC); CREATE INDEX idx_agents_performance ON agents USING GIN(performance_metrics);
// MongoDB for conversation messages const messageSchema = new Schema({ conversationId: { type: String, required: true, index: true }, role: { type: String, enum: ['user', 'assistant', 'system'] }, content: String, tokens: Number, timestamp: { type: Date, default: Date.now, index: true }, metadata: Schema.Types.Mixed }); // TTL index for automatic cleanup messageSchema.index( { timestamp: 1 }, { expireAfterSeconds: 30 * 24 * 60 * 60 } // 30 days );
# Pinecone configuration for agent discovery import pinecone pinecone.init(api_key=PINECONE_API_KEY) index = pinecone.Index("agent-embeddings") class AgentMatcher: def find_best_agents(self, query, top_k=5): # Generate query embedding query_embedding = self.encoder.encode(query) # Search for similar agents results = index.query( vector=query_embedding, top_k=top_k, include_metadata=True, filter={ "status": "active", "rating": {"$gte": 4.0} } ) # Re-rank based on performance ranked_agents = self.rerank_by_performance(results.matches) return ranked_agents

Performance Optimizations

1. Response Streaming

Instead of waiting for complete responses:

async function* streamAgentResponse(agentId, prompt) { const stream = await agent.createStream({ model: agentId, messages: [{ role: 'user', content: prompt }], stream: true }); for await (const chunk of stream) { // Send chunks immediately to client yield chunk.choices[0]?.delta?.content || ''; // Update metrics in background metrics.increment('tokens', chunk.usage?.tokens || 0); } }

2. Batch Processing

For non-urgent requests:

@celery.task def batch_process_requests(requests): # Group by agent type for efficiency grouped = defaultdict(list) for req in requests: grouped[req['agent_type']].append(req) results = [] for agent_type, batch in grouped.items(): # Process batch with single API call batch_results = agent_pool[agent_type].process_batch(batch) results.extend(batch_results) return results

3. Connection Pooling

# Optimal connection pool settings connection_pool = { 'postgres': psycopg2.pool.ThreadedConnectionPool( minconn=10, maxconn=100, host=DB_HOST, database=DB_NAME ), 'redis': redis.ConnectionPool( max_connections=200, socket_keepalive=True, socket_keepalive_options={ 1: 1, # TCP_KEEPIDLE 2: 3, # TCP_KEEPINTVL 3: 5 # TCP_KEEPCNT } ), 'mongodb': MongoClient( maxPoolSize=150, minPoolSize=10, maxIdleTimeMS=10000 ) }

Cost Optimization Strategies

1. Model Routing by Value

def select_model_by_value(request): value_score = calculate_request_value(request) if value_score > 0.8: return 'gpt-4' # Premium for high-value elif value_score > 0.5: return 'gpt-3.5-turbo' # Standard else: return 'custom-model' # Cheapest

2. Token Optimization

function optimizePrompt(prompt, maxTokens = 2000) { // Remove redundancy prompt = removeRedundantPhrases(prompt); // Compress context if (prompt.length > maxTokens) { prompt = summarizeContext(prompt, maxTokens * 0.7); } // Use references instead of repetition prompt = replaceWithReferences(prompt); return prompt; }

Monitoring & Observability

Key Metrics Dashboard

# Prometheus metrics from prometheus_client import Counter, Histogram, Gauge # Request metrics request_count = Counter( 'agent_requests_total', 'Total agent requests', ['agent_id', 'status'] ) request_duration = Histogram( 'agent_request_duration_seconds', 'Request duration', ['agent_id'] ) active_conversations = Gauge( 'active_conversations', 'Number of active conversations', ['agent_type'] ) # Cost metrics api_cost = Counter( 'api_cost_dollars', 'API cost in dollars', ['provider', 'model'] ) # Alert thresholds alerts = { 'high_latency': 'avg(request_duration) > 2', 'error_rate': 'rate(errors[5m]) > 0.01', 'cost_spike': 'increase(api_cost[1h]) > 100', 'cache_miss': 'cache_hit_rate < 0.5' }

Scaling Milestones

Month 1: 1,000 daily interactions

  • Single server
  • Basic caching
  • Direct API calls

Month 2: 10,000 daily interactions

  • Load balancer added
  • Redis caching
  • Queue processing

Month 3: 100,000 daily interactions

  • Multi-region deployment
  • Vector caching
  • Agent orchestration
  • Batch processing

Lessons Learned

What Worked

  1. Aggressive caching: 65% reduction in API calls
  2. Queue-based architecture: Handled 10x traffic spikes
  3. Semantic caching: 30% more cache hits
  4. Model routing: 50% cost reduction

What Didn't Work

  1. Microservices too early: Overengineered for initial scale
  2. Custom ML models: GPT-3.5 was good enough
  3. Real-time everything: Batch processing saved 70% on costs

Critical Decisions

  1. PostgreSQL + MongoDB: Best of both worlds
  2. Pinecone for vectors: Worth the cost
  3. Celery for queues: Battle-tested and reliable
  4. Three-tier caching: Massive cost savings

Your Scaling Roadmap

Phase 1 (0-1K users): Simple

  • Single API gateway
  • Basic caching
  • PostgreSQL database

Phase 2 (1K-10K users): Optimize

  • Add Redis caching
  • Implement queues
  • Add monitoring

Phase 3 (10K-100K users): Scale

  • Multi-region deployment
  • Agent orchestration
  • Vector search
  • Advanced caching

Phase 4 (100K+ users): Innovate

  • Custom models
  • Edge computing
  • Real-time streaming
  • Global distribution

Implementation Checklist

  • Set up API gateway with rate limiting
  • Implement three-tier caching
  • Configure queue processing
  • Deploy monitoring stack
  • Set up database architecture
  • Implement agent orchestration
  • Add circuit breakers
  • Configure auto-scaling
  • Set up cost alerts
  • Implement A/B testing

The Bottom Line

Building AgentHunter.io taught us that AI at scale isn't about having the most advanced models—it's about smart architecture, aggressive caching, and ruthless optimization.

With this architecture, we achieved:

  • 100,000 daily interactions
  • <500ms average response time
  • $0.0008 cost per interaction
  • 99.9% uptime
  • 65% cache hit rate

Ready to build your scalable AI platform? This blueprint will get you there.


About the Author: James is the founder of Orris AI. Follow on Twitter for more scaling insights.

Ready to Build Your AI MVP?

Launch your AI-powered product in 4 weeks for a fixed $10K investment.

Schedule Free Consultation →